
UNIVERSITY OF BURGUNDY

ROBOTICS PROJECT

Explorator

Devesh Adlakha

January 6, 2016



Abstract

Explorator was developed as part of the Robotics project module in the third semester of study in the Mas-

ters in Computer Vision program at the University of Burgundy, France. The project requirement was an

autonomous system integrating patrol (navigation and localization) and computer vision functionalities

on a Turtlebot 2[1] platform running the ROS Hydro Medusa[2] distribution. Explorator is modeled af-

ter applications in exploration, search and rescue, and disaster operations, which form an active area of re-

search in autonomous and semi-autonomous robotics. The task capabilities include: autonomous SLAM,

global localization, surveillance, manual override, object recognition, hazard detection, RGB-D SLAM,

and speech synthesis. The context of the work is first introduced, along with the envisioned scenario,

providing an overview of the task capabilities and their relevance. Each task is then presented indepen-

dently, followed by the integration to a working system. The challenges faced in the project development,

and ideas for future work are finally discussed. The code is available on the following GitHub repository:

https://github.com/Devesh99/Explorator. A video compilation of the results would be posted on

the following YouTube channel: https://www.youtube.com/channel/UCZjeAf84p1_njtmVjmDFTaw.

https://github.com/Devesh99/Explorator
https://www.youtube.com/channel/UCZjeAf84p1_njtmVjmDFTaw
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CHAPTER 1

INTRODUCTION

Autonomous and semi-autonomous robots are suited for venturing in unknown or
dangerous environments in applications such as exploration, search and rescue, and
disaster operations. There is wide interest in the associated problems; the DARPA
Robotics Challenge[3] aimed to accelerate progress in robotics to aid in dangerous
environments, as a response to the nuclear disaster in Fukushima, Japan, in 2011. The
recent DRC finals competition consisted of eight tasks relevant to such a scenario,
including complex motion (driving, egress, movement through rubble, climbing stairs),
object detection and manipulation (turning valves, tripping circuit breakers, using
electric equipment), among others. The winning robot, HUBO from KAIST in South
Korea, shown in figures 1.1a-1.1b, successfully completed the eight tasks, highlighting
the benefits of its design combining both humanoid and ground robot forms.

Research groups, such as the Robotics and Perception group at the University of Zurich,
are also heavily focused on the challenges in autonomous robotics. Figure 1.1d shows
the TEDx talk delivered by the head of this group, Davide Scaramuzza, demonstrating
their micro flying robots in applications of search and rescue, inspection, and environ-
ment monitoring. These quad copters rely on vision-based methods for autonomous
navigation, SLAM, and extend capabilities to multi-robot collaborations. Figure 1.1c
depicts a resultant map along with the trajectory of the motion followed.
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(a) HUBO operating a valve (b) HUBO removing rubble

(c) SLAM with a micro flying robot (d) Davide Scararmuzza: TEDxZurich

Figure 1.1: Autonomous robots

The motivation behind Explorator was to address some fundamental problems in
Robotics and Vision through tasks relevant to such scenarios. The task capabilities
are particularly inspired from project Mappotino[4], and include:

• Autonomous SLAM

• Global localization

• Surveillance

• Manual override

• Object recognition

• Hazard detection

• RGB-D SLAM

• Speech synthesis

The project was developed on the Turtlebot 2 platform with a mounted laser scan-
ner(figure 1.2), running the ROS Hydro Medusa distribution. The environment was con-
strained to an assembled arena in the laboratory, shown in figure 1.3. The envisioned
scenario incorporating the selected tasks is presented next.
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Figure 1.2: Platform: Turtlebot 2 with mounted RPLIDAR

Figure 1.3: Arena: constrained environment for project development

1.1 SCENARIO

The envisioned scenario for this project consists of three stages:

1. Autonomous map building

2. Data collection

3. Analysis and processing

1. Autonomous map building
A map provides vital information of an unknown environment. In a disaster sce-
nario, communication with the robot may malfunction or be unreliable, preventing
manual motion control of the robot. This necessitates autonomous motion for
SLAM, or autonomous SLAM.

2. Data collection
Data collection is the prime function of Explorator, and comprises the following
tasks:
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• Global localization
A robot must be able to localize itself in its environment using the created
map. While SLAM leads to both the map and localization within this map, for
subsequent expeditions, or multi-robot systems, localization must commence
from scratch. A modification of the environment, such as the addition of visual
markers, is usually not possible, and localization must be achieved relying on
sensor data and the created map. This is the global localization problem.

• Surveillance
Surveillance includes patrolling the environment while collecting data of
interest, such as camera images. Once localized, the robot may navigate
around the map for this purpose.

• Manual override
Manual motion control is necessary as a safety feature, as well as to assist in
performing tasks. An overriding behavior is desirable, giving a higher priority
to safety mechanisms and manual control over patrol.

• Object recognition
Surveying the environment for objects of interest and maintaining a log of the
identified objects as well as their position in the map provides useful insight
into the environment.

• Hazard detection
Hazards, such as fire, require an emergency routine to be followed. Such
a routine could include stopping current tasks, and heading to a defined
emergency exit.

• Speech synthesis
Speech synthesis is useful in search and rescue, or disaster operations. In this
project, it is used mostly for feedback for demonstration purposes.

3. Analysis and processing
The collected data could be analyzed for scene understanding and adapting the
robot behavior. For instance, the map could be augmented by adding the positions
of the static recognized objects. Furthermore, a registered 3D reconstruction (RGB-
D SLAM) of the scene better represents the environment for visualization as well
as its understanding.
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CHAPTER 2

FEATURES

2.1 AUTONOMOUS SLAM

SLAM is implemented and well-established in ROS, with the standard gmapping pack-
age, as well as other implementations. Conventionally, a map of an environment is
created in the form of an occupancy grid using a laser scanner (or even a Kinect) along
with teleoperation of the robot around the environment to map. The rationale behind
autonomous slam is to simply replace the manual motion control with autonomous nav-
igation around the environment. Figure 2.1 shows the two components of autonomous
SLAM: a SLAM algorithm, such as gmapping, and an exploration-based navigation.

Figure 2.1: Autonomous SLAM: concept

The frontier_exploration[5] package implements the frontier exploration[6] algo-
rithm, to explore an environment while looking for a closed boundary between known
and unknown areas. Along with gmapping, they formed the components for autonomous
SLAM in the scheme depicted in figure 2.1. The package provides a use case for a map
source, such as from SLAM, whereby the cost map frames between exploration and
SLAM match. A simple action client was implemented to specify an unbounded explo-
ration, wherein exploration continues till a closed boundary is formed. The alternative
is to specify a closed polygon to explore within, either graphically using RVIZ or through
a simple action client. The working of unbounded frontier exploration is explained
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below with reference to figure 2.2:

1. A number of frontiers are sampled, shown as red points, and based on a criteria
one of them is selected as the goal to pursue. Here, the closest frontier is selected,
depicted in purple. The exploration boundary is shown in black, along with its
inflation radius. The local cost map is overlaid on this exploration boundary. The
white areas represent explored areas, which are determined by the configured laser
scan range.

2. As the robot moves, more areas are marked as explored, and the exploration bound-
ary forms incrementally.

3. A closed boundary is eventually formed, and all areas explored within this space.
This marks the end of the unbounded exploration.

(a) Frontiers: closest selected as
navigation goal

(b) Boundary and explored areas
incrementally form

(c) Exploration finished: all areas
within boundary explored

Figure 2.2: Unbounded exploration

A single run of unbounded exploration was found to be insufficient in general to register
scans and form the complete map. As such, the unbounded exploration is repeated
for an empirically determined number of trials (4) in creating the map autonomously.
Figure 2.3 shows the restart of the unbounded exploration, following the first pass of
figure 2.2.
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Figure 2.3: Exploration restart

A frontier goal is given every 10 seconds in order to minimize failed explorations as
well to reduce the rotations in movement. Rotations lead to misalignment in the laser
scans, which are induced due to the recovery behaviors of move_base[7] when a planned
navigation trajectory cannot be followed. The recovery behaviors are maintained for
navigation, and otherwise the exploration would fail straightaway when a given goal
cannot be reached, leading to an incomplete map. Therefore, the frontier goals are
updated at the configured frequency to prevent these two cases.

Figure 2.4 shows the resultant map from the autonomous exploration depicted above,
along with a map created using teleoperation. Note that the shown exploration result
was arbitrarily selected from several tests, while the result shown from teleoperation
represents the map selected for use in the project, which was obtained after many
trials. Therefore, a comparison between these results only serves to show the viability of
autonomous SLAM for the given environment.
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(a) Map using autonomous exploration (b) Map using teleoperation

Figure 2.4: Comparison of maps from exploration and teleoperation

2.2 GLOBAL LOCALIZATION

In CatKing[8], we addressed the problem of global localization using the particle filter
implementation of amcl. Figure 2.5 shows the working of this solution: particles are
uniformly sampled in the map through an existing service call, and localization is
gradually achieved as the robot moves and accumulates laser scan and odometry data.
Due to the initial spread of the particles in the map, signifying complete ignorance of the
robot state, patrol goals may not be followed, preventing localization and convergence.
This loop was solved using move_base recovery behaviors, which initiate rotations upon
path planning failures. The range of the laser sensor and fairly distinguishable features
of the map resulted in convergence in localization in a short time.

(a) Uniform belief (b) Recovery rotations (c) Convergence

Figure 2.5: Global localization: working

We also anticipated and addressed the case of erroneous localization, where due to the
symmetry in the map, the particles converged to an incorrect pose. This represents the
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kidnapped robot problem, wherein the robot believes in an incorrect state as in figure
2.6. The 6£6 covariance matrix from amcl along with a computed difference between
the local and global cost maps were combined in a weighted sum to re-initiate global
localization based on an empirically determined threshold. This approach worked
effectively in solving a fundamental problem in robotics for the given setup.

(a) In arena (b) In map

Figure 2.6: Erroneous localization

The scope was to investigate a theoretical solution to the case of erroneous localization,
which was carried out in this project. The theory of Probabilistic Robotics[9] suggests the
addition of random hypotheses in the map as a function of the discrepancy between the
static map and laser data. The additional poses may be derived from the measurement
model, thereby placed at locations conforming to the sensor data. The particle weights
indicate localization accuracy, and may be used to determine the addition of such
particles. To mitigate the effects of dynamic obstacles or momentary sensor noise, a
short-term as well as long-term average of the weights may be maintained, as:

wsl ow = wsl ow +Æsl ow (wav g °wsl ow ) (2.1)

w f ast = w f ast +Æ f ast (wav g °w f ast ) (2.2)

where Æsl ow and Æ f ast are learning rates for the short and long term averages, respec-
tively, and wav g is the mean of current particle weights. The resampling adds random
particles with a probability max(0.0,1.0° w f ast

wsl ow

). As a result, a lower short-term likeli-
hood, corresponding to lower confidence in localization, leads to the addition of random
particles.

The amcl node is an implementation of this algorithm, and provides the rates of the
two averaging filters as parameters. The tuning of these parameters was investigated to
resolve erroneous localization. A suggested configuration of Æsl ow = 0.001 and Æ f ast =
0.1 added few random particles, and proved of little consequence in the localization
process for the given environment. A configuration of Æsl ow = 0.5 and Æ f ast = 1.0, the
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maximum values permissible, regularly added many random particles, as shown in
figure 2.7. Even so, the recovery was unreliable, and very slow. The parameters could not
be configured to attain reliable and fast recovery, which our previous solution provided.
The selection among the previous solution or the current amcl configuration to maintain
in this project remains to be determined.

Figure 2.7: Addition of random hypotheses in map

2.3 SURVEILLANCE

Surveillance consists of patrolling the arena in a defined sequence of locations and
collecting data of interest, such as images from the camera stream.

2.3.1 PATROL

Figure 2.8 shows the seven poses defined in the map for patrol. Each goal pose is main-
tained for a configurable period (10 seconds by default). The patrol was implemented
in the driver node as a slight modification of the patrol script provided in rbx1_nav[10].
For effective patrol, the navigation parameters were tuned to the robot and the map.
The following criteria were used in configuring the parameters:

• Safety: avoiding collisions with the static environment and minimizing chances of
collision with dynamically added obstacles.
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• Smooth trajectories: reducing rotations and oscillation, and following the global
path planned.

Figure 2.8: Patrol goal poses

The four navigation configuration files and their configured parameters are detailed
below, followed by the reasoning behind such configuration:

1. base_local_planner:

• recovery_behavior_enabled: true

• clearing_rotation_allowed: true

• max_vel_x: 0.2

• max_rotational_vel: 0.5

• acc_lim_x: 1.0

• acc_lim_th: 1.0

• pdist: 0.8

• gdist: 0.6

2. costmap_comom_params:

• footprint: modeled as shown in figure 2.9

• inflation_radius: 0.3

3. global_costmap_params:

• update_frequency : 3.0Hz

• publish_frequency : 3.0Hz

• resolution: 0.02

• observation_sources: scan

• scan: marking: false, clearing: false
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4. local_costmap_params:

• update_frequency : 3.0Hz

• publish_frequency : 3.0Hz

• resolution: 0.02

• width: 3.0

• height: 3.0

• observation_sources: scan

• scan: marking: true, clearing: true

Figure 2.9: Robot Footprint

The recovery behaviors and clearing rotation provide motion required in global localiza-
tion, and are also useful in navigation to handle path planning failures. The reduced
motion velocity and acceleration leads to both safer and smoother navigation. A higher
pdist parameter gives a higher importance to following the global plan. The robot
footprint models the robot more accurately by accounting for the laser scanner, and
also adds a safety margin through the larger polygon design. The cost maps have an
update and publish frequency considering the system performance. The resolution is
set to match the map.

In CatKing[8], a problem encountered during patrol was the accumulation of laser scans
in the cost map, as in figure 2.10. This happened as laser scans marked obstacles often
incorrectly due to the errors in rotational odometry, which were not cleared through
ray-tracing. As a result, these marking remained the cost map, preventing navigation
to these areas. A radical solution was implemented there by clearing the cost maps at
regular intervals.

12



Figure 2.10: Laser scan accumulation: problem encountered in CatKing[8]

In this project, a simple solution of configuring the navigation parameters is applied.
The requirement is to have a static global cost map, along with a local cost map, which
may be marked and cleared through laser scan and ray-tracing, respectively. This was
achieved by specifying the marking and clearing parameters independently for each
cost map, as given above. As a result, the global cost map is obtained from the map
server and inflated to propagate the inflation radius cost, while markings and clearings
are only performed on the local cost map. A subtle documentation detail here is that the
parameter static in the cost map[11] configuration refers to the source of the map, and
could be renamed external to be less misleading. The local cost map was also reduced
in size to ensure ray-tracing could clear markings effectively and completely.

2.3.2 DATA LOGS

The following data are of interest for surveillance in this project:

• Camera images

• Depth images

• Camera info

• Laser scans

• Odometry

• Object identifications

• Transforms
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The clear choice to record such heterogeneous data was in a ROS bag, which has the
following benefits:

• Scale: simple and convenient addition and removal of topics.

• ROS abstraction: as ROS is agnostic to the source of the data, playback from a bag
could be used to simulate an entire system run. Specifically in this project, offline
processing is performed using data from bag files.

• Data formats: the different data types are managed natively in a bag file.

A drawback is the relatively large size of bag files. Table 2.1 shows the large size (2.3GB)
of a test bag recording the shown topics. Using compressed image topics considerably
reduces the amount of data. Still, the size is substantial given that additional topics
are recorded for a longer period in test runs. However, the size of the recorded data
is not considered as a major constraint in this project. In the depicted scenario, the
laptop would be expected to possess sufficient resources to store the desired data, as
the netbook does in the current setup. As such, no efforts were made for compressing
the recorded bag files.

Topics Messages Duration Size

/camera/depth_registered/image_raw 1597 53.3s 2.3GB
/camera/rgb/camera_info 1598
/camera/rgb/image_rect_color 1598
/tf 4497
/camera/depth_registered/image_raw/compressed 1743 58.6s 84.7MB
/camera/rgb/camera_info 1759
/camera/rgb/image_rect_color/compressed 1758
/tf 4712

Table 2.1: ROS Bags: Data Size

2.4 MANUAL OVERRIDE

Overriding behavior for manual motion control is achieved through command velocity
multiplexing. The command velocity multiplexer[12] is an instance of a mux[13] node,
which subscribes to multiple command velocity publishers and outputs a single com-
mand velocity to the mobile base. This is depicted in figure 2.11, where three command
velocity topics are multiplexed to result in a single command velocity published to the
mobile base.
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Figure 2.11: Command velocity multiplexer

A configuration file sets the priority for multiplexing, and the standard configuration
was maintained, which receives input from three sources in decreasing order of priority:

• Safety controller

• Teleoperation

• Navigation

Figure 2.11 also depicts the respective command velocity topics published to by these
sources. The joystick is assigned a higher priority than the navigation to result in the
desired overriding behavior. The safety controller supersedes both teleoperation and
navigation, and is active through the bumper and/or wheel drop sensor, depending
upon its setup and inclusion.

Since the joystick and navigation nodes run simultaneously, an activation signal was
implemented in the joystick node to override navigation. Otherwise, the joystick node
would continuously publish a command velocity, equal to zero by default, and the
navigation would always be overridden. This way, the joystick is active only when the
designated button is pressed. Such functionality, with a similar implementation exists
in the standard turtlebot_teleop[14] package, but was realized only after completing
this implementation.

An alternative to this approach is to select the command velocity source through state
transitions. While the state transition could also be achieved through a joystick input,
and thereby lead to overriding behavior, the command velocity multiplexer preserves
the state of the system in a simple manner. Only the command velocity published
to the mobile base is interchanged upon the joystick activation, while the rest of the
system remains as is. Consequently, the navigation velocities are still published, albeit
overridden by the joystick, and resume control once the joystick is deactivated. This was
exactly the desired behavior in this project. Also, note that multiple sources publishing
to a single command velocity topic leads to jerky motion due to the differing velocities
and publish rates.
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2.5 OBJECT RECOGNITION

The find_object_2d[15] package interfaces several feature detectors and descriptors
in OpenCV for object recognition. An object database was created, comprising four
selected objects, shown in figure 2.12. The objects were selected to contain texture in
order to facilitate feature detection and matching. The default SURF[16] algorithm was
used as both the feature detector and descriptor, and figure 2.12 also shows the detected
features for the selected objects.

(a) Object 1 (b) Object 2

(c) Object 3 (d) Object 4

Figure 2.12: Object database

The implementation handles multi-object detection, and a result is shown in figure
2.13. All shown objects are successfully detected despite partial occlusion. Furthermore,
although objects 1 and 3 appear similar visually, the matching algorithm correctly distin-
guishes them. The object contours are computed based on a homography estimation,
which relies on planar objects. The recognition performed reliably in the experimenta-
tion setting, with no observed false positives. The performance is ultimately dependent
on the feature algorithm, and the results could vary using other algorithms or in dif-
ferent environments. Note that the result in figure 2.13 was obtained through the user
interface of the package for illustration purposes, and only the node is used otherwise.
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Figure 2.13: Multi-object recognition

Using registered depth images, the pose of the detected object with respect to the camera
may also be determined, as shown in figure 2.14. The package also utilizes transforms
through tf[17] for a representation in the map reference frame, which is of greater
interest in the depicted scenario. Although RVIZ is configured to display the detected
objects in the map frame, the close distance required for detection seldom enables it.
All objects are under 25cm in both width and height, and object 3 is considerably small,
a little over 10cm in its maximum dimension. In fact, objects 2 and 4 are opposite faces
of the same FPGA board. As such, the objects are identified when fairly close to the
camera, whereby their pose is difficult to obtain.

Figure 2.14: Object position in camera reference frame
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2.6 HAZARD DETECTION

Hazard detection was implemented as a particular case of object recognition. The
object shown in figure 2.15, or object 4 in the database of figure 2.12, was selected to
represent danger, and its detection triggers an emergency routine. This routine consists
of halting patrol, and evacuating to a defined emergency exit. The preemption was
implemented through inter-process message passing between the object recognition
and driver nodes. Further details are given in section 2.9.

Figure 2.15: Object representing hazard

The hazard detection could be adapted to the environment, through different object
models or even the data representing a hazard, such as sound or other sensor signals.
Variables such as the distance to defined exit points in the map may also be considered in
the emergency routine in a more realistic scenario. Here, the purpose is to demonstrate
the preemption of patrol and the emergency routine in a simplistic scenario.

2.7 RGB-D SLAM

Two packages implementing RGB-D SLAM were explored:

1. RTAB-MAP ROS[18]

2. RGBDSLAM v2[19]

Both worked well in tests using a hand-held Kinect and relying on visual odometry to
reconstruct my apartment. rtabmap_ros was selected as it provides a use case incorpo-
rating robot odometry and scan data as depicted in figure 2.16, whereas RGBDSLAM v2
relies entirely on visual odometry. Given the largely texture less arena, using the robot
odometry is crucial for registration and reconstruction. Additionally, rtabmap_ros is
very well documented, with several tutorials for different use cases.
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Figure 2.16: RTABMAP: robot use case

The provided user interface, rtabmapviz includes convenient functionality, such as
saving the point cloud and the aligned laser scans. This way, the point cloud may be
exported and processed in an external application, such as MeshLab[20]. An offline
reconstruction of the arena from a recorded bag file using a default configuration is
shown in figure 2.18. This screen shot of the reconstruction was also taken in MeshLab,
where the point cloud was exported. And figure 2.17 shows the aligned laser scans
forming the map of the arena.

Figure 2.17: Aligned laser scans
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Figure 2.18: 3D reconstruction of the arena

The package provides several additional functionalities, such as a localization mode,
which aligns the created map and point cloud upon loop closure, as well as multi-session
mapping, which could be very useful in the depicted scenario.

2.8 SPEECH SYNTHESIS

The sound play[21] package includes capabilities to play sounds, such as speech or
music. A sound client node was run on the netbook, which subscribes to the /say_this
topic. The messages (of string format) obtained on this topic are then spoken by

publishing to /robotsound, as is standard with the sound_play node.

Expected behavior:

• The messages received on the /say_this topic are synthesized to speech unless a
playsong message is received, which results in playing a stored sound file instead.

• A sound being played is overridden when a new message is received. Particularly
for object recognition, consecutive frames detecting the same object lead to such a
“stutter” behavior.

In this implementation, any node requiring voice feedback independently publishes
to the /say_this topic. While this approach could lead to overlap of sound messages,
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voice feedback is mostly for demonstration purposes in this project, and not considered
critical as the data saved in the logs reflects the true status.

2.9 DRIVER NODE

Instead of a higher level task manager such as smach[22], concurrent processing is
achieved by simply running all nodes simultaneously with inter-process communication
to exchange data and simulate state transitions. The selected scenario and tasks allow
this simple structure without conflicts among the different topics or nodes. In terms
of a state machine, the driver node can be thought to comprise two states: patrol and
an emergency routine, as shown in figure 2.19. These two states are briefly explained
below:

• Patrol: the driver node runs through a sequence of patrol locations while a flag,
patrol_flag, is enabled. Global localization is initiated upon start up, and patrol
goals induce the motion required for localization convergence. The other tasks
described in the data collection stage in section 1.1 also run simultaneously, in-
cluding data logging, manual override, object recognition, hazard detection, and
speech synthesis.

• Emergency exit: upon detecting a hazard, the patrol is stopped by disabling
the patrol_flag, and an emergency routine of heading to a defined exit is fol-
lowed. The hazard detection is signaled by the object_recognition node on the
/hazard_detection topic, which is subscribed to by the driver node.

Figure 2.19: State machine
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CHAPTER 3

DISCUSSION

The challenges encountered during project development are discussed, along with ideas
for future work.

3.1 CHALLENGES FACED

• RPLIDAR: the rplidar process died frequently and unexpectedly. The status mes-
sage indicated a segmentation fault, but efforts to determine its cause were futile.
Replacing the sensor formed the solution.

• OpenNI: rtabmap_ros requires registered depth images in the computation of
3D point clouds. While tests using the Kinect on the workstation successfully
created a 3D reconstruction, similar tests with the Kinect connected on the netbook
failed in generating a point cloud[23]. The cause was erroneous, seemingly blank
registered depth images, a problem faced by other ROS users as well[24]. Suggested
solutions led to a failure in detecting the Kinect[25] and even removed several
critical packages such as move_base and frontier_ exploration. A fix suggested
in this link resulted in detection, albeit inconsistently, and with a status message
yet to be understood. Thus, the image stream from the Kinect is first verified upon
start up before project execution.

• Networking: streaming data between the netbook and the workstation was fairly
slow in the lab environment, with all of us clogging the bandwidth. The poor
streaming occasionally disrupted the working of nodes requiring streaming data.
A few fixes were applied:

– Subscribing to compressed image topics: vastly reduced the bandwidth re-
quirements, as well as storage memory for recording to a bag file.

– Saving the bag file on the netbook: since the bag is processed offline, and
the netbook has sufficient memory to store the relatively large bag files, they
are saved on the netbook. This is also coherent with the envisioned scenario,
where unreliable or malfunctioning networking would require saving the data
directly on the robot computer.

• Roscpp vs. Rospy: the driver node includes patrol and handles the interrupt from
hazard detection. Initially, this node was implemented in C++ as a matter of
preference and familiarity. However, multi-threading was required to handle the
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patrol loop simultaneously with the hazard detection subscriber. Since this is
handled natively in rospy, the driver node was re-implemented in Python as a
modification of the patrol script provided by rbx1.

• Documentation: the standard ROS tools and packages are well documented, but
the independent packages vary significantly in the quality of their documenta-
tion. The documentation highly influenced the choice of packages to use, and the
selected packages, such as frontier_exploration and rtabmap_ros are compre-
hensive in their documentation, with well organized wiki pages.

Furthermore, fundamental tasks in Robotics, such as autonomous SLAM and
global localization were developed in this project using ROS tools and existing
packages, however, a standard tutorial or guide documenting their development is
missing. There exist scattered wiki pages and answers on the forums, with some
useful details, but a complete and thorough documentation could be very useful
for the community.

3.2 FUTURE WORK

• Visual servo: Position-based visual servoing using the demo_pioneer package with
visp was already configured and tested for this project. The idea was to show
visual servoing as a candidate solution for object manipulation, such as plugging
to a socket, through the application of auto-docking. In a passive environment a
vision-based method, such as visual servoing could prove useful. Auto-docking
involved navigating to way point close to the dock, and aligning to a desired
robot pose with respect to a tag mounted above the dock. However, integrating
navigation commands from visual servoing was difficult due to the existing patrol
loop, and would be simpler with a task manager such as smach. Additionally, the
auto-docking application was unimpressive, as the size of the tag necessitated
moving very close to the dock to initialize tag detection.

• State machine: a task manager, such as smach, is required to handle autonomous
functioning in an organized manner. Additional tasks, such as visual servoing
would be easier to integrate in this way. The visualization capabilities of smach are
useful as well.

• Autonomous selection of patrol goals: in the current scenario, the map is pro-
cessed and patrol goals selected subsequent to a mapping expedition. While this is
plausible in a realistic scenario as well, as this process could be performed through
networking while the robot maintains its state, an autonomous algorithm to select
way points in the generated map would be desirable in cases where data transfer
is unreliable or unfeasible. As such, the robot would generate a map of its en-
vironment, determine goal poses to patrol, and collect data of interest without
interruption or the need for networking. The 3D reconstruction could still be
offline, unless of use during patrol.
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CHAPTER 4

CONCLUSION

Explorator is influenced from the foreseeable robotics applications in exploration,
search and rescue, and disaster operations. The task capabilities are modeled after
such scenarios, and include autonomous SLAM, global localization, surveillance, man-
ual override, object recognition, hazard detection, RGB-D SLAM, and speech synthesis.
These and other attendant problems are active areas of research in both academia and
industry, and the DARPA Robotics Challenge should serve as a catalyst in their develop-
ment. The design and scalability of the current implementation could be improved by a
task manager, such as smach. This would allow easy integration of additional tasks, such
as the already tested visual servoing.

Existing ROS packages were mostly used and configured in this project, with a few
implemented nodes where required. The ecosystem of ROS, along with the convenient
tools and documentation, is compelling for robotics applications, and the driving
force behind projects such as Explorator and CatKing. The Robotics course modules
and projects have been highly enriching, and it was a sheer joy to spend time in the
laboratory.
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APPENDIX A

PROJECT MANAGEMENT

A.1 TOOLS

Working alone on the project, only a few tools were required for project management:

• Trello: several lists were used to manage planning and tasks, as well as to track
progress. Additionally, material and bookmarks from my personal computer were
shared via Trello.

• GitHub: storing the project code and maintaining it as open-source.

A.2 DEVELOPMENT

The initial plan was to continue my work on time to contact estimation(TTC) with a
catadioptric sensor[26], while fulfilling the project requirements. A new, gradient-based
method for TTC estimation was developed, which was expected to perform in real-time
with a high output frequency, and I was eager to implement and test it on the robot.
However, upon setting up the hardware for this research, the uncertainty of progress
and achieving results became apparent; the catadioptric sensor only approximated the
model used in the mathematical development of the method, and produced an image
with a significantly large unusable area in the center (figure A.1).
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Figure A.1: Image from catadioptric sensor: large unusable area in center.

Meanwhile, I sought to address fundamental problems in Robotics and Vision, such as
autonomous SLAM, global localization, and RGB-D SLAM, where the work with TTC
estimation did not fit coherently. Consequently, around halfway through the project
development, I decided to halt working on TTC estimation, and completely focus on the
project. This detachment from the research work led to freedom in developing a fitting
scenario for this project, which eventually shaped to exploration, search and rescue,
and disaster operations.

Planning the project development was difficult as the time required to complete several
of the selected tasks was unpredictable. More importantly, achieving success was
not necessarily a given, as although I had a conception for solving problems such as
autonomous SLAM, the precise packages to use and their modification to function as
required were ambiguous. In this regard, the laboratory laptop and access to the Kinect
were beneficial, particularly for incorporating RGB-D SLAM. Ultimately, I spent a lot of
time and effort to come up with the current project, and the experience has been highly
satisfying.
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