Stratified Autocalibration of Cameras with Euclidean Image Plane

<u>Devesh Adlakha</u> Adlane Habed Fabio Morbidi Cédric Demonceaux Michel de Mathelin

3D reconstruction from uncalibrated images

A reconstruction only up to a projective ambiguity can be obtained.

Euclidean Image Plane Assumption

A camera with square pixels *i.e.* zero skew and unit aspect ratio is said to have a Euclidean Image Plane (EIP) [Heyden and Åström, 1997].

- Most modern cameras have (very close to) square pixels
- Not fully exploited in stratified autocalibration

Assumption	Methods
Constant intrinsics	[Pollefeys and Van Gool, 1999] [Chandraker et al., 2010] [Adlakha et al., 2019]
Constant intrinsics + zero skew	[Habed et al., 2012] [Wu et al., 2013]

Contributions

Assuming a moving camera with EIP and constant intrinsic parameters,

- formulation of a new quartic polynomial in the plane at infinity, π_{∞} , that is obtained for each image pair \longrightarrow affine reconstruction
- a stratified autocalibration method that can be used with 3 or more images

Experiments show that our method performs more reliably than existing ones.

Background

• The perspective 3×4 projection matrices (uncalibrated) are of the form,

$$P_i = [H_i | e_i], \quad i = 1, 2, ..., n$$

where H_i is the homography of the reference plane and e_i is the epipole.

• The inter-image homography induced by π_∞ is given as [Habed et al., 2012],

$$\mathsf{H}_{\infty ij} = \mathsf{H}_{j}\mathsf{H}_{i}^{*} - \mathsf{H}_{j}[\pi_{\infty}]_{\times} \mathsf{H}_{i}^{\mathsf{T}}[\mathsf{e}_{i}]_{\times}^{\mathsf{T}} - \mathsf{e}_{j}\pi_{\infty}^{\mathsf{T}}\mathsf{H}_{i}^{*}$$

where H^{*} is the adjoint matrix of H and $[\pi]_{\times}$ is the skew-symmetric matrix associated with vector π . As such, H_{∞ij} is linear in π_{∞} .

Modulus constraint

- For constant intrinsic parameters, $H_{\infty ij}$ is a conjugate rotation
- Eigenvalues of $H_{\infty ij}$ thus have equal moduli

Characteristic polynomial of $H_{\infty ij}$,

$$\det(\mathsf{H}_{\infty 1j} - \lambda \mathsf{H}_{\infty 1i}) = -\det(\mathsf{H}_{\infty 1i})\lambda^3 + \operatorname{tr}(\mathsf{H}_{\infty ij})\lambda^2 - \operatorname{tr}(\mathsf{H}_{\infty ji})\lambda + \det(\mathsf{H}_{\infty 1j}) = 0$$

Modulus constraint: necessary condition on π_{∞} for $H_{\infty ij}$ to satisfy the eigenvalue property [Pollefeys and Van Gool, 1999],

$$m_{ij}(\pi_{\infty}) = \det(\mathsf{H}_{\infty 1i})\operatorname{tr}(\mathsf{H}_{\infty ji})^3 - \det(\mathsf{H}_{\infty 1j})\operatorname{tr}(\mathsf{H}_{\infty ij})^3 = 0$$
 for all $i \neq j$

 m_{ij} is a quartic polynomial in π_{∞} .

Infinite Cayley Transform

For two cameras i and j with constant intrinsic parameters, the Infinite Cayley Transform (ICT) [Wu et al., 2013, Habed et al., 2012] is,

$$\mathsf{Q}_{\infty ij} = \lambda_j \mathsf{H}_{\infty ij} - \lambda_i \mathsf{H}_{\infty ji}$$

Properties

- $Q_{\infty ij}$ is similar to a skew-symmetric matrix
- $\operatorname{tr}(\mathbf{Q}_{\infty ij}^*) > 0$
 - \rightarrow combined with the modulus constraint, form necessary and sufficient conditions for $Q_{\infty ij}$ to be similar to a skew-symmetric matrix [Wu et al., 2013]
- Assuming zero skew, the coordinates of the principal point (u,v) can be expressed as [Habed et al., 2012],

$$u = (\mathbf{Q}_{\infty ij})_{11}/(\mathbf{Q}_{\infty ij})_{31}, \quad v = (\mathbf{Q}_{\infty ij})_{22}/(\mathbf{Q}_{\infty ij})_{32}$$

New EIP polynomial constraint

Given a 3×3 matrix B, we define the matrix operator Φ as,

 $\Phi(\mathsf{B}) = (\mathsf{B}^* \circ \mathsf{B})_{31} + (\mathsf{B}^* \circ \mathsf{B})_{32}$

where \circ is the Hadamard (elementwise) product.

ICT property: Consider two cameras *i* and *j* with EIP and constant intrinsics,

$$\Phi(\mathbf{Q}_{\infty ij}) = 0$$

A quartic polynomial constraint on π_∞ can be derived using this property.

New EIP polynomial constraint

We observe that $\Phi(\mathsf{Q}_{\infty ij})$ expands as,

$$\Phi(\mathbf{Q}_{\infty ij}) = a_{ij}(\pi_{\infty})\lambda_j^3 - b_{ij}(\pi_{\infty})\lambda_i\lambda_j^2 + b_{ji}(\pi_{\infty})\lambda_i^2\lambda_j - a_{ji}(\pi_{\infty})\lambda_i^3 = 0$$

where the coefficients a_{ij} and b_{ij} are cubic polynomials in π_{∞} .

Key result: $\lambda_j^3 a_{ij}(\pi) = \lambda_i^3 a_{ji}(\pi)$ if the modulus constraint is satisfied. Thus, $p_{ij}(\pi_{\infty}) = -b_{ij}(\pi_{\infty}) \operatorname{tr}(\mathsf{H}_{\infty ji}) + b_{ji}(\pi_{\infty}) \operatorname{tr}(\mathsf{H}_{\infty ij}) = 0$

 p_{ij} is a new quartic polynomial in π_{∞} : the EIP polynomial.

Polynomial inequality constraints

- Chirality (camera centers): $c_i(\pi_{\infty}) > 0, \quad i = 1, ..., n$, where $c_i(\pi_{\infty}) = \det(\mathsf{H}_{\infty 1i})$
- ICT property: $q_{ij}(\pi_{\infty}) = \operatorname{tr}(\mathbf{Q}^*_{\infty ij}) > 0, \quad i = 1, \dots, n-1,$ $j = i+1, \dots, n$
- Principal point bounds: for an image-centered $2\overline{u} \times 2\overline{v}$ image,

$$u_{ij}(\pi_{\infty}) = \overline{u}^{2}(\mathbf{Q}_{\infty ij})_{31}^{2} - (\mathbf{Q}_{\infty ij})_{11}^{2} \ge 0, \quad i = 1, \dots, n-1,$$

$$v_{ij}(\pi_{\infty}) = \overline{v}^{2}(\mathbf{Q}_{\infty ij})_{32}^{2} - (\mathbf{Q}_{\infty ij})_{22}^{2} \ge 0, \quad j = i+1, \dots, n$$

Estimating the plane at infinity

Homogenized polynomials: for a polynomial f of degree d in π ,

 ${}^{h}f(\pi,\pi_{4}) = \pi_{4}^{d}f(\pi/\pi_{4})$

Polynomial optimization problem:

$$\min_{\pi, \pi_{4}} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} {}^{h} m_{ij}^{2}(\pi, \pi_{4}) + {}^{h} p_{ij}^{2}(\pi, \pi_{4})$$
s.t.
$$\stackrel{h}{c_{i}(\pi, \pi_{4}) > 0,} \qquad i = 1, \dots, n,$$

$$\stackrel{h}{u_{ij}(\pi, \pi_{4}) > 0,} \qquad i = 1, \dots, n-1, \quad j = i+1, \dots, n,$$

$$\stackrel{h}{u_{ij}(\pi, \pi_{4}) \ge 0,} {}^{h} v_{ij}(\pi, \pi_{4}) \ge 0, \qquad i = 1, \dots, n-1, \quad j = i+1, \dots, n,$$

$$\stackrel{h}{c_{1}(\pi, \pi_{4})^{h} c_{n}(\pi, \pi_{4})} + \frac{1}{n-1} \sum_{i=1}^{n-1} {}^{h} c_{i}(\pi, \pi_{4})^{h} c_{i+1}(\pi, \pi_{4}) = 1$$

Solved using Lasserre's hierarchy [Lasserre, 2008, Henrion et al., 2009].

Stratified autocalibration algorithm

Given a projective reconstruction,

- 1. Estimate π_∞ by solving the polynomial optimization problem using Lasserre's hierarchy
- 2. Refine the estimated π_∞ using the normalized cost:

$$\pi_{\infty} = \arg\min_{\pi} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{m_{ij}^2(\pi) + p_{ij}^2(\pi)}{(c_i(\pi)c_j(\pi))^4}$$

3. Compute the intrinsic parameters linearly

Experimental results

EIP* our algorithm

EIP EIP* - inequality constraints

GO-Stratified QUARCH*M GO-DAQ [Chandraker et al., 2010] [Adlakha et al., 2019] [Chandraker et al., 2007]

Experimental results

Sequence	Method	$\Delta f(\%)$	$\Delta uv(\%)$	$\Delta\gamma$	Time (s)
fountain-P11	EIP	0.08	0.25	1.06	0.59
	GO-Stratified QUARCH*M	$\begin{array}{c} 0.10 \\ 0.05 \end{array}$	$\begin{array}{c} 0.19 \\ 0.23 \end{array}$	$\begin{array}{c} 1.08 \\ 1.05 \end{array}$	$\begin{array}{c} 302.90 \\ 2.44 \end{array}$
	GO-DAQ	0.36	1.26	0.01	1.49
Herz-Jesu-P8	EIP	0.55	2.84	3.98	0.57
	GO-Stratified QUARCH*M	$\begin{array}{c} 43.86\\ 0.88 \end{array}$	$\begin{array}{c} 31.13\\ 3.11 \end{array}$	$\begin{array}{c} 157.31 \\ 2.03 \end{array}$	$243.18 \\ 1.26$
	GO-DAQ	1.43	1.27	0.05	1.53
City hall Leuven	EIP	0.78	0.72	2.80	0.56
	GO-Stratified QUARCH*M GO-DAQ	$7.09 \\ 2.94 \\ 9.93$	$10.10 \\ 6.70 \\ 7.68$	$25.85 \\ 5.81 \\ 9.70$	$169.21 \\ 1.02 \\ 1.38$

Experimental results

Golden Statue

Eglise du Dome

Alcatraz Water Tower

Arbre aux Serpents¹

¹L'Arbre aux Serpents de Niki de Saint Phalle ©Musées d'Angers/ ©2017 Niki Charitable Art Foundation. Image courtesy Renato Saleri.

Summary

- Formulated a new quartic polynomial constraint on π_∞ assuming a moving camera with EIP and constant intrinsic parameters
- Our stratified autocalibration method relies on polynomial optimization and can be used with 3 or more images
- Experiments showed that our method performs more reliably than existing ones, especially for short sequences